Fulton-MacPherson Configuration Spaces and Logarithmic Geometry

Sian Chi Mok
University of Cambridge

1. (Ordinary) Fulton-Mac Pherson Configuration Spaces

$$
F M_{n}(x)
$$

Configuration spaces.
Let X be a smooth, projective variety
$\operatorname{Conf}_{n}(X)$: parametrises n distinct labelled points on X.

Configuration spaces.
Let X be a smooth, projective variety
$\operatorname{Conf}_{n}(X)$: parametrises n distinct labelled points on X.
-Topology:

- $\pi_{1}\left(\operatorname{Con} f_{n}(\mathbb{C})\right)=P B_{n}, \pi_{1}\left(\widetilde{U \operatorname{Conf}_{n}(\mathbb{C}}\right)=B_{n}$ "Artin braidgP".
- Totaro proved that $H^{*}\left(\operatorname{Con} f_{n}(X) ; Q\right)$ can be computed from $H^{+}(x ; Q)$.

Configuration spaces.
Let X be a smooth, projective variety
$\operatorname{Conf}_{n}(X)$: parametrises n distinct labelled points on X.
-Topology:

- $\pi_{1}\left(\operatorname{Con} f_{n}(\mathbb{C})\right)=P B_{n} ; \pi_{1}\left(\widetilde{U C_{o n} f_{n}}(\mathbb{C})\right)=B_{n}$ "Artin braid g P^{2} ".
- Totaro proved that $H^{*}\left(\operatorname{Con} f_{n}(X) ; Q\right)$ can be computed from $H^{+}(x ; Q)$.
- Algebraic geometry: $\operatorname{Con} f_{n}\left(\mathbb{P}^{\prime}\right)$ is related to $\mu_{0, n}$

Observe: $\operatorname{Con} f_{n}(x)$ is not compact!

Observe: Conf (x) is not compact!
Points can collide with each other in the limit, so the limiting configuration is not in $\operatorname{couf}_{n}(x)$.

Aside: Why compact spaces?

- Compact spaces have more geometric invariants: can integrate over the space to get numbers (GW,DT etc)

Aside: Why compact spaces?

- Compact spaces have more geometric invariants: can integrate over the space to get numbers (GW,DT etc)
- Hodge theory only works when the space is compact.

Aside: Why compact spaces?

- Compact spaces have more geometric invariants: can integrate over the space to get numbers (GW,DT etc)
- Hodge theory only works when the space is compact.
- The way to do Hodge theory or to obtain invariants on a non-compact space is to find a nice compactification.

Goal: Compactify Conf n (x).
One naive compactification: X^{n}

- but this is not nice!
!.fat diagonal
(The complement $X^{n} \backslash \operatorname{Con} f_{n}(x)=\bigcup_{s \in\{1,, n\}} \Delta_{s}$ is not a divisor in general)

Goal: Compactify Conf n (x).
One naive compactification: $X^{n} \quad$ "boundary" -but this is not nice! fat diagonal
(The complement $X^{n} \backslash \operatorname{Con} f_{n}(x)=\bigcup_{s \leq\{1,, n\}} \Delta_{s}$ is not a divisor in general)
[Fulton - Mac Pherson 194]:
Gave compactification $F M_{n}(X)$ which is nice:
($F M_{n}(X) \backslash \operatorname{Con}_{n}(X)$ is a "simple normal crossing divisor") boundary
1.1 Degenerate configurations

Aim:
Find and describe a bigger compact space $F M_{n}(x)$ containing Conf u (X) by adding "degenerate" configurations, st. the boundary $F M_{n}(x) \backslash \operatorname{Conf}_{n}(x)$ is a divisor.

Main idea:
Consider two points trying to collide:

Main idea:
Consider two points trying to collide:

- The location of the points are the same $(=x$)
- But tangent vectors are different.

Main idea:
Consider two points trying to collide:

- The location of the points are the same $(=x)$
- But tangent vectors are different.
To record the tangent vectors:

(record tangent vectors up to some automorphism of $T_{x} X$)

Given a family of n distinct labelled points, $P\left(T_{n} x\right) \overbrace{}^{\mathbb{P}\left(T_{n} x \oplus \mathbb{C}\right)}$ constunct a stable degeneration of X :

- At the limit, where points coincide (at x, say), blow up at x and form $B l_{x} X \frac{\|}{\mathbb{P}\left(T_{x} X\right)} \mathbb{P}\left(T_{x} X \oplus \mathbb{C}\right)$.

Given a family of n distinct labelled points, $P(\operatorname{Tn} x) \xrightarrow{\mathbb{P}\left(T_{n} x \oplus \mathbb{C}\right)}$ construct a stable degeneration of X :

- At the limit, where points coincide (at x, say), blow up at x and form $B l_{x} \times \frac{1}{\mathbb{P}\left(T_{x} x\right)} \mathbb{P}\left(T_{x} X \oplus \mathbb{C}\right)$.

Then record the tangent vectors (up to some automorphism fixing $\left.\mathbb{P}\left(T_{x} x\right)\right)$

- If some of the points on the expanded component still collide, then repeat this procedure on the component.
(2)

- If an expanded component "has only 2 markings", contract it.
(3)

(considered same configuration as (2))

The [FM'q4]

- There is a compact space $F M_{n}(X)$ whose "boundary points" $F M_{n}(X) \backslash C_{n} f_{n}(X)$ parametrise these data.

The [F M'94]

- There is a compact space $F M_{n}(X)$ whose "boundary points" $F M_{n}(X) \backslash \operatorname{Con} f_{n}(X)$ parametrise these data.
- $F M_{n}(X)$ is constructed via a sequence of blowups of X^{n} (replacing $X^{n} \backslash \operatorname{Con} f_{n}(x)=\bigcup_{s \leq\{1, \ldots n\}} \Delta_{s}$ with an SNC divisor.)

The [FM'94]

- There is a compact space $F M_{n}(X)$ whose "boundary points" $F M_{n}(X) \backslash \operatorname{Con} f_{n}(X)$ parametrise these data.
- $F M_{n}(X)$ is constructed via a sequence of blowups of X^{n} (replacing $X^{n} \backslash \operatorname{Con} f_{n}(x)=\bigcup_{s \leq\{1, \ldots n\}} \Delta_{s}$ with an SNC divisor.)
Corollary: $F M_{n}(x)$ is smooth and projective!

Remarks
$F M_{n}(X)$, constructed this way, is isomorphic to the closure of the diagonal embedding

$$
\operatorname{Con} f_{n}(x) \leftharpoonup X^{n} \times \prod_{|s| \geqslant 2} B l_{\Delta_{s}}\left(X^{n}\right)
$$

This can be generalised to a "wonderful compactification of an arrangement of subvavicties" [L.Li'09]
2. Configuration space Conf n (XID) of a pair (X,D) and its compactification (work in progress!)

Setting: A simple normal crossings pair (X, D)

$$
\text { egg. } \begin{aligned}
\left(\mathbb{P}^{2}, D=\right. & (X=0)+(Y=0)) \\
& +(Z=0)
\end{aligned}
$$

2. Configuration space Conf n (X|D) of a pair (X,D) and its compactification (work in progress!)

Setting: A simple normal crossings pair (X, D) egg. $\begin{aligned}\left(\mathbb{P}^{2}, D=\right. & (X=0)+(Y=0)) \quad X \text { smooth, projective } \\ & +(Z=0)\end{aligned}$

$$
+(z=0) \quad D=D_{1}+\ldots+D_{r} \text { divisor }
$$

- has smooth irreducible components
- locally looks like a union of wordinate hyperplanes intersecting transverse.
$\operatorname{Conf}_{n}(X \backslash D)$: parametrises n distinct labelled points on X, away from D.

Conf $f_{n}(X \backslash D)$: parametrises n distinct labelled points on X, array from D.

This is non-compact, in 2 ways:
(1) Points can run to D in the limit

Conf $f_{n}(X \backslash D)$: parametrises n distinct labelled points on X, array from D.

This is non-compact, in 2 ways:
(1) Points can run to D in the limit
(2) Points can collide into each other in the limit

Goal: Compactify Conf $(X \backslash D)$. Do this in 2 steps:

Goal: Compactify Conf $(X \backslash D)$. Do this in 2 steps:
(1) Compactify $(X \backslash D)^{n}$ (points away from D but can collide $w /$ \longrightarrow call it $X_{D}^{[n]}$ each other)

Goal: Compactify Conf $(X \backslash D)$. Do this in 2 steps:
(1) Compactify $(X \backslash D)^{n}$ (points away from D but can collide w / call it $X_{D}^{[n]}$ each other)
(2) Modify $X_{D}^{[n]}$ to "separate the points" (FM degeneration) \rightarrow call it $F M_{n}(X \mid D)$.

Goal: Compactify Conf Con $_{n}(X \backslash D)$. Do this in 2 steps:
(1) Compactify $(X \backslash D)^{n}$ (points away from D but can collide $w /$ call it $X_{D}^{[n]}$ each other)
(2) Modify $X_{D}^{[n]}$ to "separate the points" (FM degeneration) \rightarrow call it $F M_{n}(X \mid D)$.
(D smooth: (1), (2) already achieved by [Kim-Sato '09].)

Aside: Why care about $\operatorname{Conf}_{n}(X \backslash D)$?

Aside: Why care about Conf n $(X \backslash D)$?
Given a non-compact variety U, can then study $\operatorname{Con} f_{n}(U)$ by finding an SNC compactification (X, D) set. $U=X \backslash D$.

Aside: Why care about Conf n $(X \backslash D)$?
Given a non-compact variety U, can then study confun (U) by finding an SNC compactification (X, D) set. $U=X \backslash D$.
So compactifying Conf $(U) \leadsto$ compactifying $\operatorname{Con} f_{n}(X \backslash D)$ $\left(\right.$ get $\left.F M_{n}(X \mid D)\right)$
2.1 Stable degenerations via expansions

Aim: Record "degenerate configurations" arising from the limits of families of n labelled points notion D.
2.1 Stable degenerations via expansions

Aim: Record "degenerate configurations" arising from the limits of families of n labelled points notion D.
$n=1, D$ smooth (for simplicity):

2.1 Stable degenerations via expansions

Aim: Record "degenerate configurations" arising from the limits of families of n labelled points notion D.
$n=1$, D smooth (for simplicity):

Idea: Record the "normal component" of the limit.

A little bit of log geometry (with minimal technical details) (X, D) SNC pair, $D=D_{1}+\ldots+D_{r}, D_{i}$ irred components

A little bit of log geometry (with minimal technical details)
(X, D) SNC pair, $D=D_{1}+\ldots+D_{r}, D_{i}$ irred components
Associated cone complex $\Sigma_{X}: \operatorname{Rays} \leftrightarrow D_{i}$ $k-\operatorname{dim} \underline{l}$ cones $\leftrightarrow D_{i i} \cap \ldots \cap D_{n_{k}}$.

A little bit of log geometry (with minimal technical details)
(X, D) SNC pair, $D=D_{1}+\ldots+D_{r}, D_{i}$ irred components
Associated cone complex $\Sigma_{X}:$ Rays $\leftrightarrow D_{i}$ k-dim cones $\longleftrightarrow D_{i_{1}} \cap \ldots \cap D_{i_{k}}$.
E.g. $\left(\mathbb{P}^{2},(x=0)+(y=0)+(z=0)\right)$

Subdivision of a cone complex:
Examples:

Subdivision of a cone complex:
Examples:

Key example:
$\Sigma_{x}=\mathbb{R}_{\geqslant 0}^{r} \mathrm{~W} /$ some higher dimensional cones removed.

$$
\begin{aligned}
\Sigma_{x}= & \overbrace{1-\text { skeleton of } \Sigma x}^{r \text { rays }} \\
& +n \text { points }
\end{aligned}
$$

$$
\begin{aligned}
& r=2: \\
& n=3
\end{aligned} \Sigma_{x}=\left\{\backslash \Sigma_{x}=\tilde{f}_{x}^{x}\right.
$$

Expansion
Def: The corresponding expansion of X is

$$
\begin{aligned}
& \tilde{X} \rightarrow \tilde{\Sigma}^{\sim} \text { subdivision } \tilde{\Sigma}_{x}=\underset{\sim}{\sim} \times \underset{\substack{x \\
n=3}}{\left(x, D=D_{1}+D_{2}\right)} \\
& \downarrow \square \downarrow \text { (Key Example) } \\
& \underset{\text { "topic }}{\longrightarrow} \sum x \\
& \text { dictionary" } \\
& \begin{array}{l}
\Sigma_{x}^{N}=\underset{\sim}{\sim} \times \begin{array}{c}
\left(x, D=D_{1}+D_{2}\right) \\
n=3
\end{array} \\
\Sigma_{x}=\xrightarrow[\longrightarrow]{~ o f ~}
\end{array}
\end{aligned}
$$

Expansion
Def: The corresponding expansion of X is

Remarkable feature:
Configuration space
Expansions \longleftrightarrow of n points on Σ_{x} w / n points (Tropical configuration space)

$$
\begin{aligned}
& \text { E.g. }(x, D), D=D_{1}+D_{2}, x=\xrightarrow{D_{2}} \xi_{D} \\
& \widetilde{\Sigma}_{x}=\sum_{x}=\longrightarrow \sum_{x}
\end{aligned}
$$

Egg. $(X, D), D=D_{1}+D_{2}, X=$

$$
\tilde{\Sigma}_{x}={ }^{\hat{x}}{ }^{x} \hookrightarrow \Sigma_{x}=\tilde{\longrightarrow}
$$

\mathbb{P}^{\prime} - bundle $\sim\left(\mathbb{C}^{*}\right)^{2}$-Pull back modification of cones to modification of corresponding strata.

Egg.: $(X, D), D=D_{1}+D_{2}, X=$

$$
\tilde{\Sigma}_{x}={ }^{\hat{x}}{ }^{x} \hookrightarrow \Sigma_{x}=\tilde{\longrightarrow}
$$

\mathbb{P}^{\prime}-bundle

- Pull back modification of cones to modification of corresponding strata.
- A bundle of $\mathbb{P}^{\prime \prime}$ over $D_{2} \backslash D_{1}$.
so $\tilde{X}=$
- $D_{1} \cap D_{2}$ replaced by 2 disconnected $\left(\mathbb{C}^{*}\right)^{2}$-components lying aver it.

Main Idea:
(1) (Tropical) configuration of n points on \sum_{x} \longrightarrow gives an expansion \tilde{X} of $X w / n$ points (can be non- distinct) These give the 'boundary points' of $X_{D}^{[n]}$ $\left(=\right.$ points of $\left.X_{D}^{[n]} \backslash C_{\text {conf }}(X \backslash D)\right)$

Main Idea:
(1) (Tropical) configuration of n points on \sum_{x} \longrightarrow gives an expansion \tilde{X} of $X w / n$ points (can be non- distinct) These give the 'boundary points' of $X_{D}^{[n]}$

$$
\left(=\text { points of } X_{D}^{[n]} \backslash C_{0 n f}(X \backslash D)\right)
$$

(2) Carry out a Fulton-MacPherson degeneration on \bar{X}.
\leadsto These form the points in $F M_{n}(X \mid D)$!

Why is $F M_{n}(X I D)$ compact?

Why is $F M_{n}(X \mid D)$ compact?

Why is $F M_{n}(X \mid D)$ compact?

Theorem (that will result from my project) F Mn (XID) can be constructed as a scheme.

Theorem (that will result from my project)
FMn(XID) can be constructed as a scheme.

Future directions:

- Compute $H^{*}\left(F M_{n}(X \mid D)\right)$
- Investigate any relation with $H_{i l} b^{n}(X I D)$ "log GW rs $\log D T$ theory of points"

Thank you for listening!

