Siao Chi Mok University of Cambridge

1. (Ordinary) Fulton-MacPherson Configuration Spaces FMn(X).

· ·	•	, , ,		ייי ער כ	nf).		د 1		- - 1	\ O	י י י	•	r S	r P		U)	•	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•	•	· ·	•	•	•	•	•	•	•	•	• •	· ·	•	•
• •	•	•	•			, t	ر	r V	•	l		•		•	י ה				H.	•					-		•		л	- 1	Ь.		•	•	•	•	•	• •	•	•	•	•	•	•	•	•		• •	•	
• •	•	•	•			л.	•				٦	-		- .	2	vv	Ű	U U	(//	`.)	ľ		ין י	-0	ጥ	vv	•	. V		.~) ·	•	•	•	•				•	•	•	•	•	•	•			•	•
• •	•	•	•	Ċ	0	∕^∙	f.		X)		P	o	$\hat{\boldsymbol{\sigma}}$	21	n	X) N	s.e	ろ	. 1	n	. C	hi	Śł	i in	H	-	(a	be	l	d	F	10	in	tz		רס סע	م ۲	X	/ 1 _ 1		•	•	•				•
• •	•	•	•	• •	•	•		•	•	•	•	•	y	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•			•	•		•	•		• •		•	•	•	•	•	•	•		• •		•
• •	•	•	•	• •	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•			•	•	•	•	•		• •		•	•	•	•	•	•	•	•	•••	•	
• •	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•		• •		•	•	•	•	•	•	•	•	• •	•	
• •	•	•	•	• •	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•			•	•	•	•	•		• •		•	•	•	•	•	•	•	•	•••	•	
• •		•	•	• •	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	0	•	•	•	•	• •		•	•	•	•	•	•			• •	0	•
• •	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•			•	•	•		•		• •		•	•	•	•	•	•	•	•	• •	•	
• •			•		•					•																			•									• •						•	•					
• •	•	•	•	• •	•			•	•			•	•			•	•	•		•	•	•	•	•	•				• •			•	•					• •		•	•	•		•	•	•		• •		
	•	•		•••		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•			•	•	•	•			• •		•	•	•	•	•		•				
																											•									•														
	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•			•			•	•	•	•			• •		•	•	•	•	•	•	•			•	•

Configuration spaces.
Let X be a smooth, projective variety
Confr(X): parametrises n distinct labelled points on X.
- Topology: $3\frac{2}{3}$ "pure broid gp" $Tr(Conf_n(\mathbb{C})) = PBn$; $Tr(UConf_n(\mathbb{C})) = Bn$ "Artin braid gp".
· Totaro proved that $H^{*}(Confn(X); Q)$ can be computed from $H^{*}(X; Q)$.

Configuration spaces
Let X be a smooth, projective variety
Confr(X) : parametrises n distinct labelled points on X.
- Topology: 3^{2}_{2} = unordered conf. space 3^{2}_{13} = Contn(X)/Sn 3^{2}_{13}
• $TL_1(Conf_n(\mathbb{C})) = PB_n^{(1)}; TL_1(UConf_n(\mathbb{C})) = B_n^{(1)} Artin braidgp''.$
· Totaro proved that H* (Confn(X); Q) can be computed from H*(X;Q).
-Algebraic geometry: Confr (P') is related to Mo, n

Observe: Confn(X) is not compact!

Observe: Confn(X) is not compact! Points can collide with each other in the limit, so the limiting configuration is not in Confn(x).

Aside: Why compact spaces? · Compact spaces have more geometric invariants: can integrate over the space to get numbers (GW, DT etz)

Aside: Why compact spaces? · Compact spaces have more geometric invariants: can integrate over the space to get numbers (GW, DT etc.) . Hodge theory only works when the space is compact.

Aside: Why compact spaces? · Compact spaces have more geometric invariants: can integrate over the space to get numbers (GW, DT etc.) . Hodge theory only works when the space is compact. • The way to do Hodge theory or to obtain invariants on a non-compact space is to find a nice compactification.

Goal: Compactify Confr (X) One naive compactification: Xⁿ -but this is not nice! fat diagonal (The complement $X^{(-)}(Conf_n(X)) = \bigcup_{s \leq 21, -n \leq s}$ is not a divisor in general)

Goal: Compactify Confr (X) boundary" One naive compactification : Xn -but this is not nice! fat diagonal (The complement $X^{(X)} = \bigcup \Delta_s$ is not a divisor in general) [Fulton - Mac Pherson '94]: Gave compactification FMn(X) which is nice: (FMn(X) \ Confn(X) is a "simple normal crossing divisor") boundary

1.1 Degenerate configurations Ain: Find and describe a bigger compact space FMn(X) containing Confn (X) by adding "degenerate" configurations, s.t. the boundary FMn(X) \ Confn(X) is a divisor.

Main idea. Consider two points trying to collide:

Main idea: Consider two points trying to collide: - The location of the points are the same (= n) -But tangent vectors are different.

Main idea Consider two points trying to collide: - The location of the points are the same (=n) -But tangent vectors are different. To record the tangent vectors (record tangent vectors up to some automorphism n12 Tux

Griven a family of n distinct labelled points, P(TnX) P(TnXOC) construct a stable degeneration of X: TnX - At the limit, where points coincide (at x, say) blow up at n and form Bln X IL P(Tn X OC). P(Tn X)

Griven a family of n distinct labelled points, $P(T_n \times \oplus \mathbb{C})$ construct a stable degeneration of X: - At the limit, where points coincide (at x, say), blow up at x and form $Bl_{x} \times \frac{11}{P(T_{n} \times \Theta C)}$. Then record the tangent vectors hup to some automorphism fixing P(InX)) D TnX 2 x x TyX / x x 4 x x X 7 1234 56 7 n y

- If some of the points on the expanded component still collide, then repeat this procedure on the component. Tr(Tr X) × ... x 6/ Ty; 12 × × 4

- If an expanded component "has only 2 markings", contract it. 3 2× 2X 56 contrac 1234 1234 (considered same configuration as (2)

Thm [FM 94] - There is a compact space FMn(X) whose "boundary points" FMn(X) \ Confn(X) parametrise these data.

Thm [FM 94] - There is a compact space FMn(X) whose "boundary points" FMn(X) \ Confn(X) parametrise these data. - FMn(X) is constructed via a sequence of blowups of X^n (replacing $X^n \setminus Cont_n(x) = \bigcup_{s \leq s \mid 1, s \neq n} \Delta_s$ with an SNC divisor.)

Thm [FM 94] - There is a compact space FMn(X) whose "boundary points" FMn(X) (Confn(X) parametrise these data. - FMn(X) is constructed via a sequence of blowups of X^n (replacing $X^n \setminus Cont_n(x) = \bigcup_{s \in \{1,..,n\}} \Delta_s$ with an SNC divisor.) Corollary: FMn(X) is smooth and projective!

	•	• •	 • •		
Lemarks	•	• •	 • •	• •	
FMa(x) constructed this way, is isomorphic to			 		
	•	• •	 • •		•
(1) P in line of embedding		• •	 • •		
the dosure of the diagonal concurrent			 		
· · · · · · · · · · · · · · · · · · ·					
хи т т т т т т т т т т т т т т т т т т т			 		
$Cont_{\mu}(X) \longrightarrow X^{*} \times [I] Bl_{\mu}(X^{*})$			 		
		• •	 • •		
		• •	 		
This can be generalised to a					
· · · · · · · · · · · · · · · · · · ·			 		
"andertal compatification of an amangement			 		
vor construction of our out and the		• •	 • •		
of subvarieties" [11-100]			 		
		• •	 • •		
		• •	 		

2. Configuration space Confra (XID) of a pair (X,D) and its compactification (work in progress!) Setting: A simple normal crossings pair (X, D) e.g. $(\mathbb{P}^2, \mathbb{D} = (X = 0) + (Y = 0))$ + (Z = 0)

2. Configuration space Confr (XID) of a pair (X,D) and its compactification (work in progress!) Setting: A simple normal crossings pair (X, D) e.g. $(\mathbb{P}^2, D = (X = 0) + (Y = 0))$ + (Z = 0)X smooth, projective D=D,t...+Dr divisor -has smooth irreducible components - locally looks like a union of coordinate hyperplanes intersecting transversely.

	•	•						•	• •							•			•									•								•			•	•				•		
			• •			•	•		, . , .		•			•	•	•	•	•						•	•	•	•				1 '-		· ·	1.					•		• •		•	•		
	•		• •	(Ø	λ·	Ł	1		X	$\sum_{i=1}^{n}$	1)))) ·	1	·	Po	л.	CL	\sim	Ŀ	fr	ίS.	e	2	• 1	N	•	U	is:	4	nc	. †.	la	لم	211	Ľ	st .	pe	ñи	13	, <u>c</u>	אע	•	• •	•
																	ľ							0				ر م																		
									• •								Х	,	0	u	5	ai	1 ·	¥	vo	n	へ	.]).	• '																
•		•	• •			•	•	•	• •	•					•	•	•		•			÷	J				•	•			•	•				•			•	•	• •			•	• •	•
•														•												•		•						•				•								
								•																												•					• •			•	• •	
•					•				• •							•	•	•	•				•	•			•	•			•	•				•				•	• •			•	• •	•
•						•	•	•	• •				•		•	•	•	•	•			•		•			•	•			•	•	• •	•				•	•	•	• •			•	•	
•		•				•		•	• •						•	•	•		•					•																•	• •			•	• •	
•					•	•	•		• •							•	•	•	•			•	•	•			•	•	•		•	•	• •	•		•		•	•	•	• •			•	•	•
•														•												•		•						•				•								
								•																												•					• •			•	• •	
•		•				•	•	•	• •							•	•	•				•					•	•	•		•	•	• •	•		•		•	•	•	• •			•	•	•
•		•	• •	•			•	•	• •			•		•		•	•	•	•			•		•	•	•	•				•	•	• •	•		•		•	•	•	• •		•	•	•	•
					•	•		•						•												•				•	•	•											•			
			• •																																											

Confn(XID): parametrises n distinct labelled points on X, away from D. This is non-compact, in 2 ways Points can run to D in the limit

Confn(XID) : parametrises n distinct labelled points on X, away from D. This is non-compact, in 2 ways : Points can run to D in the limit (1) (2) Points can collide into each other X in the limit

Goal: Compactify Conf. (XID). Do this in 2 steps:

Groal: Compactify Conf. (XID). Do this in 2 steps: ⑦ Compactify (X\D)ⁿ (points away from D but can collide w/ → call it X^[n] each other)

Groal: Compactify Conf. (XID). Do this in 2 steps: ⑦ Compactify (X\D)ⁿ (points away from D but can collide w/ → call it X_D⁽ⁿ⁾ each other) \bigcirc Modify $X_D^{(n)}$ to "separate the points" (FM degeneration) \longrightarrow call if $FM_n(X|D)$.

Groal: Compactify Conf. (XID). Do this in 2 steps: ⑦ Compactify (X\D)ⁿ (points away from D but can collide w/ → call it X_D⁽ⁿ⁾ each other) \bigcirc Modify $X_D^{(n)}$ to "separate the points" (FM degeneration) \longrightarrow call if $FM_n(X|D)$. (D smooth: D, @ already achieved by [Kim-Sato '09].)

											•	• •								•	•	•		•	• •											•				•	
							•				•	•																				• •								•	
• •																									• •							• •									
								•															•												•						
																				•		•																			
	٨_		:	÷	1.	.1	<u>ا</u> م ا		•					I				· ۱	 1	n		0	ŀ	1	·	、 ·	£.	5	. ()											
	FT?	50	U	1	۰V	V	v.	4	. C	D	n		. (と	01	ðι	λ-	5	 (1	\sim	÷	-2	. (ıХ		、レ))		-											
							. 🗸	J														. `		. 1																	
																				•		•																			
												• •								•		•	•																		
												• •								•		•	•																		
								•															•												•						
								•															•												•						
								•															•												•						
								•																										•	•						
						•		•													• •										•			•	•						
						•		•													• •										•			•	•						
• •			• •			•	•	•	•	•		• •								•	•	•	•		• •							• •		•	•	•	• •		•	•	
						•		•													• •										•			•	•						
						•		•													• •										•			•	•						
						•		•													• •										•			•	•						
								•															•												•						
								•															•												•						
• •		•	• •			•																			• •							• •					•				
• •																									• •							• •									

Aside: Why care about Confr (X\D)? Criven a non-compact variety U, can then study Contr(U) by finding an BNC compactification (X, D) s.t. U=X\D.

Aside: Why care about Confr (X)D)? Criven a non-compact variety U, can then study Contr(U) by finding an SNC compactification (X, D) s.t. U=X\D. So compactifying Confr. (U) and compactifying Confr. (X/D) (get FMn(XID))

2.1 Stable degenerations via expansions Aim: Record "degenerate configurations" arising from the limits of families of n labelled points not on D.

2.1 Stable degenerations via expansions Aim: Record "degenerate configurations" arising from the limits of families of n labelled points not on D. N=1, Dsmooth (for simplicity): (7: NoX NpX

2.1 Stable degenerations via expansions Aim: Record "degenerate configurations" arising from the limits of families of n labelled points not on D. N=1, Dsmooth (for simplicity): NpX $\left(\begin{array}{c} \gamma_{1}, N_{P} \chi \\ \gamma_{2}, \gamma_{3} \end{array} \right)$ Idea: Record the normal component of the limit

A little bit of log geometry (with minimal technical details) (X,D) SNC pair, D=D1+...+Dr, Di irred comments

A little bit of log geometry (with minimal technical details) (X,D) SNC pair, D=Dit...+Dr, Di irred components Associated cone complex Zix: Rays
Di k-dim! comes => Di, A ... A Dir

A little bit of log geometry (with minimal technical details) (X,D) SNC pair, D=Dit... + Dr, Di irred components Associated cone complex Zix : Rays
Di k-dim! cones a Dir A ... A Dir $E \cdot g \cdot (P^2, (\chi = 0) + (Y = 0) + (Z = 0))$ $\begin{array}{c}
P_{3} \\
P_{3} \\
D_{1}
\end{array}$ $\begin{array}{c}
D_{3} \\
D_{3} \\
D_{3} \\
\end{array}
\end{array}$ $\begin{array}{c}
P_{3} \\
P_{3} \\
D_{3} \\
\end{array}$ $\begin{array}{c}
P_{3} \\
P_{3} \\
D_{3} \\
\end{array}$ $\begin{array}{c}
P_{3} \\
P_{3} \\
P_{3} \\
P_{3} \\
\end{array}$ $\begin{array}{c}
P_{3} \\
\end{array}$ $\begin{array}{c}
P_{3} \\
P_$

Subdivision of a cone complex: Examples: _ 11 ·/r

Subdivision of a cone complex: Examples : Zx 1. -X = 11 or even 11Key example: rrays $\Sigma_{X} = R_{30} \text{ w/some higher dimensional}$ $\Sigma_{X} = 1 - \text{skeleton of } \Sigma_{X}$ cones removed. + n points. r=2: $Z_x = 1$ $\sum_{x} = i$

Expansion Def: The corresponding expansion of X is $\begin{array}{c} x \\ x \\ x \\ nz3 \end{array} \left(\begin{array}{c} X, D = D_1 + D_2 \end{array} \right)$ D (Key Example) "toric dictionary"

Expansion Def: The corresponding expansion of X is $\sum_{x}^{N} = \frac{1}{2} x + \frac{(X, D = D_{1} + D_{2})}{n^{2}}$ X -> ZIX subdivision L I (Key Example) -> ZIX "toric dictionary" Remarkable feature Configuration space of n points on ZX Expansions w/n points (Tropical configuration space)

 $\overline{E.g.}$: (X,D), $D = D_1 + D_2$, $X = \bigwedge^{22}$ () $\overline{D}_{X} = \{x : \longrightarrow \overline{D}_{X} = \{x\}$

E.g.: $(X, D), D = D_1 + D_2, X =$ Zx= - Pull back modification of cones to modification of corresponding P- bundle x strata. X XVV

E.g.: $(X, D), D = D_1 + D_2, X = \int_{-\infty}^{\infty}$ $\rightarrow \Sigma_{X} = \int$ 7Jx = - Pull back modification of cones P- bundle (C*)^{*} • × • to modification of corresponding strata. \sim $(\mathbb{C}^{*})^{2}$ - A bundle of P's over Dz/Pi. DiAD, replaced by 2 disconnected (C[#])²-components lying over it. $\boldsymbol{\chi}$

Main Idea: (Tropical) configuration of a points on ZX -> gives an expansion X of X w/ n points (can be non-distinct) These give the boundary points of XD (= points of XD \ Confn(X)D)

Main Idea: (Tropical) configuration of a points on ZX ~> gives an expansion X of X w/ n points (can be non-distinct) These give the boundary points of XD (= points of XD \ Confn(X\D)) ② Carry out a Fulton - MacPherson degeneration on X ~ These form the points in FMn(XID)!

Why is FMn(XID) compact? EFMn(XID) $\in Confn(XVD)$

Why is FMn(XID) compact? GFMn(XIP) E Confn(XV) EFM.(XID) EConfn(XVD)

Why is FMn(XID) compact? limit GFMn(XID) E Confn(XVD) ž imit EFMn(XID) EConfn(XID) EFMn (XID 12 $EConfn(X \mid D)$

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		•				•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•		 •	•	•	•
						7						. 1	٢.													•											.															
						h	l	ðΥ	r	n	$\mathbf{\Omega}$	_ ([-	Ŧŀ	۱ Δ	+	1	الم	i II		n	S	11	<u>+</u>).	τ.	Ъ	ന :	\sim		nn	()		θv	ึ่งเ	2	÷Ł																
					. •	-				_	-															T.			`.	•••	-0			J		- •	1															
						T	A1.						~	5						١.																																
						T		Л	-m		X,	\mathcal{L}	V))		C	a	M		6	e	(o	n	-2.	m	Λ (大	L	£	0	e	C	λ		sd	re	inn	1													
																																-								•												
											÷.								6		-	0	1	-	_																											
																																,																				ľ
																																																				ľ
								•																														•														ľ
•		•		•		•	•			•	•	•		•			•	•	•						•						•							•	• •	•							•	•			•	ľ
•				•		•	•		•					•	•		•	•	•		•	•	•		•													•	• •	•								•			•	ľ
•		•		•			•		•	•		•		•			•	•	•			•																•	• •				•				•	•			•	1
				•			•				•						•	•	•																			•	• •							•		•			•	•
•		•						•	•				•		•					•				•																						•						•
•	•																									•													• •							•						•
•	•			•		•	•	•	•					•	•		•	•	•		•	•	•	•	•		•											•	• •	•					•	•	•	•			•	•
•	•			•		•	•	•	•					•	•		•	•	•		•	•	•	•	•		•											•	• •	•					•	•	•	•			•	•
•	•	•		•			•	•	•		•		•		•											•																		•	•	•					•	•
•	•	•		•			•	•	•		•		•		•											•																		•	•	•					•	•
•													•							•						•																•		•	•	•						•
•													•							•						•																•		•	•	•						•
•	•	•		•			•	•		•		•			•									•				•										•	• •	•			•		•	•	•	•			•	•
•	•	•		•			•						•							•		-																•	• •					•	•	•	•				•	•
•	•	•	•				•	•	•	•	•	•	•		•	•	•	•	•	•						•												•	• •						•	•		•			•	•
•	•	•	•			•		•	•	•	•	•				•	•	•	•									•										•	• •						•	•	•	•				
•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•					•													•	•	• •	•	•	•			•		•	•			•	•
•	•	•						•	•	•	•	•				•																							• •						•	•		•				•

HMn(XID) C	n be constructed as a scheme.	• •
	~~~a~~	
Future direction		
· Compute H*(	FM~(XID))	
· Investigate o	ny relation with Hilb"(XID)	• •
	og DT theory of points"	